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ABSTRACT

This thesis describes the design methodology and the process of employing

the GENESIL Silicon Compiler (GSC) (Version 7. 1) in the layout of a pipelined

multiplier, in 1.5 micron CMOS technology, using a parallel multiplier cell

array. Additionally, background material on the GSC, the theory of

multiplication, as well as the concept and theory of pipelining are presented.

The results revealed two practical limits of the GSC system which precluded

achieving the high component density made possible by full custom, "manual"

CAD methods using graphic layout tools. Although the GSC system did not

perform as desired in this study, it offers a viable alternative to the labor-

intensive, full custom, VLSI graphic layout tools in use today.
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I. INTRODUCTION

A. BACKGROUND

Multiplication is often an essential function in many digital systems. For

example, a multiplier is a necessary part of any digital signal processing circuit

[Ref. 1]. In many signal processing operations, such as correlation, convolution,

filtering, and frequency analysis, one needs to perform multiplication [Ref. 2],

and, in order to perform real-time signal processing, a high-speed multiplier is

required [Ref. 31 Additionally, in the majority of digital signal processing

applications the critical processing paths usually involve many multiplications

[Ref. 4]. Clearly, fast digital multipliers are one of the most important building

blocks in Very Large Scale Integration (VLSI) chips for advanced digital signal

processing.

In high-performance systems, many of the above operations are implemented

with bipolar device technology, which consumes a significant amount of direct

current (DC) power. On the other hand, Complementary Metal Oxide

Semiconductor (CMOS) technology can substantially reduce the power

consumption, but results in much slower device speed.

CMOS is a combination of P-channel and N-channel enhancement metal

oxide semiconductor field effect transistors (MOSFETs) used in a

complementary circuit arrangement that is useful in digital logic circuitry.

Among its advantages are that it has extremely low power dissipation, requires

only one DC power supply, operates over a wide range of supply voltages, and

can drive as many as 50 gate-inputs [Ref. 5]. The fabrication of a CMOS IC

(integrated circuit) requires a "prescription" for preparing the photomasks that
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will be used in the manufacturing process. This "prescription" is a set of rules

which provides a link between the circuit designer and process engineer during

the manufacturing phase. The rules are often referred to as layout rules or as

design rules. The main objective of the layout rules is to make a circuit with

optimum yield in as small an area (geometry) as possible without jeopardizing

the reliability of the circuit [Ref. 2]. There are several ways to describe the

design rules. One way is by the "micron" rules which are stated as some micron

resolution. Micron design rules are usually given as a list of minimum feature

sizes and spacing required for all the masks in a given fabrication process [Ref.

2]. Hence, as indicated in the abstract of this report, the multipliers designed in

this thesis have a minimum feature size of 1.5 microns in CMOS technology. By

incorporating pipelining into the design, the throughput of a large CMOS circuit

can be improved significantly [Ref. 4]. For example, the results of a study by

Hallin and Flynn [Ref. 6] indicated that pipelining can give a 40 percent increase

in adder efficiency and a 230 percent increase in multiplier throughput.

With the advent of high-speed semiconductor memory, an increasing

mismatch between memory access and multiplication time has arisen.

Consequently, there is considerable interest in parallel array multipliers [Ref. 7].

An array multiplier and a multiplier using a Wallace tree are well-known for

their high-speed multiplication [Ref. 31. The previous study by Hallin and Flynn

[Ref. 6] also demonstrated that the most efficient multiplier is a maximally

pipelined tree multiplier which was shown to be 50 percent more efficient than

the array multiplier. However, because unit cells in the array multiplier are used

repeatedly its layout is highly modular. Modularity makes the array multiplier

more favorable than a tree multiplier for VLSI implementation. Therefore,

many MOS multipliers have been fabricated using this method [Ref. 31.
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As ICs grow increasingly more complex, it becomes necessary to develop

new methods to manage the design complexities, as well as the expenses

associated with the design and testing of the IC. Also, from this increase in IC

complexity arises the demand for faster and more economical methods to

streamline the design process. One state-of-the-art solution to meet this demand

is the silicon compiler. A silicon compiler is a computer system which generates

IC layouts from high-level descriptions. The advantage that a silicon-compiler-

based process has over a custom IC system design process is that the latter

requires a team of experts in the fields of logic implementation, circuit

simulation, chip layout, and testing. However, the design process based on the

silicon compiler may be accomplished by one individual utilizing a top-down,

hierarchical design methodology beginning with a partitioned chip set,

progressing downward into individual chips and modules, and terminating at the

block level. There is far less time required to design a IC using a silicon

compiler than for a full custom, "manual" CAD method using graphic layout

tools. Thus, one can see that the silicon compiler provides a streamlined method

for rapid development of IC systems [Ref. 8]. The disadvantages of the silicon

compiler are that the resulting circuit is often slower and the layout is not always

efficient in its use of area.

B. THESIS GOALS

The motivation for this thesis was to learn more about digital multipliers, as

well as to work with state-of-the-art VLSI circuit design tools. The main goal of

this thesis was to design a pipelined multiplier using the GENESIL Silicon

Compiler. Concomitant with this goal was the desire to learn more about the

concept and theory of pipelining. An emphasis has been placed on documenting

3



the thought processes that went into the multiplier designs in this thesis, as well

as the problems encountered along the way. Additionally, it was a goal to fully

explore and probe the GENESIL Silicon Compiler to determine its practical

limits in parallel multiplier array design. Finally, there was an attempt to

produce a document that could be understood by one not well versed in digital

design methodology by first reviewing the basis concepts of digital multipliers

and then discussing the concept and theory of pipelining.

The following is a description of each of the chapters which follow:

Chapter 2: Introduces the reader to the GENESIL Silicon Compiler.

Chapter 3: Presents three multiplier formats: serial, serial/parallel, and
parallel.

Chapter 4: Presents the basic concepts of pipelining.
Chapter 5: Discusses the design process of a pipelined multiplier array.

Chapter 6: Discusses the limitations of the silicon compiler.

Chapter 7: Concludes the thesis with a summary and recommendations for
follow on multiplier design.
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H. GENESIL SILICON COMPILER

A. INTRODUCTION

The purpose of this chapter is to introduce the reader to the GENESIL

Silicon Compiler (GSC) system. The intent is to present a broad overview of

GSC capabilities so that the reader may become acquainted with the features used

in this report. For a detailed description of the GSC system the reader is referred

to References 9 through 11.

B. GENESIL SYSTEM DESCRIPTION

The GSC system is a design automation software system which allows

systems engineers and circuit designers to design complex VLSI computer chips.

GENESIL produces IC designs from architectural descriptions and allows for

their verification. Figure 1 shows a block diagram of the GSC development

system and Figure 2 depicts the overall layout of the GSC system hardware. The

GSC design tasks and activities are listed in Figure 3 and it is these activities that

will be emphasized in this chapter.

The GSC is based on an object-oriented hierarchical system running under

the UNIX operating system. The objects consist of Blocks, Modules, Chips, and

Chip-sets.

Use of the GSC system does not require design considerations at the

transistor gate level. A systems engineer or circuit designer can simply

incorporate into his layout one of the myriad of GSC circuits resident in the GSC

library. The resident circuits in the GSC library consist of random access

memory (RAM), read only memory (ROM), programmable logic arrays (PLA),

5



arithmetic logic units (ALU), multipliers, and several less complex circuits such

as basic logic gates and data-path elements [Ref. 12].

UNIX

GENESIL

41-- Knowledge Base

Designer-.)P Design Definitionl -4- Function Sets

Timing Simulation Geometric
Model Model Model

I I I i
Timing Functional Tapeout -
Analysis [Simu on

Figure 1 GENESIL Silicon Compiler Developmental System

[From Ref. 9]
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Seiko Color Hordcopler

S Hewlett-Packsrd Plotter

'1 1 PRINTRONIX Une Printer
"aIgen Low Printer

Seiko Termina!
Sytemr Console VAX-11/785 System

16-Meytes Random Access Memory
Genesil Function Set Database 2 450--Mtyle RAB1 Wnchester Disk Drhws

280 Mbyte RA6I W nchester Disk Drive
ULVRIX-32 System. Version 2.2

Figure 2 GENESIL Silicon Compiler Hardware System

(From Ref. 121

Tasks/Activities * f.1fnus/Commands Forms

Design Description *SELECT OBJECT
ATTACI NEW

*SELECT OBJECT
UP DOWN PATHII

Definition SPECIFICATION Specification Form

HEADER Header Form
I

Netlisting *NET tETLIST Net Netlist Form

*OBJECT NETLIST Object Netlist FormI
Floorplanning *PLACEMENT Placement Form

*FUSION Fusion Form

'PINOUT Pinout Form

Compiling *COMPILE

Functional *SIMULATE Ehvironment Form

Simulation Setup Form

Timing Analysis *TIMING ANALYSIS Timing Analysis Form
I

Manufacturing *PACKAGE EDIT

Interface I
*TAPEOUTI

'PLOT Plot Form

Figure 3 GENESIL Design Activities [From Ref. 121
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Before leaving this section the reader should become acquainted with the

following tasks and activities of the GSC development system in order to derive

the maximum benefit from the design process described in Chapter 5. For a

detailed explanation of each task or activity the reader is referred to [Refs. 9-111.

C. TASKS AND ACTIVITIES

1. DEFINITION

The DEFINITION activity is the process whereby the user defines an

object using the options provided in the DEFINITION menu. Defining an object

consists of accessing the HEADER and SPECIFICATION forms from the

DEFINITION menu.

A. HEADER

Use of the HEADER option allows the user to display the HEADER

form, which is dependent on the current object connected to the user's account.

The HEADER form allows the user to specify the technology and fabrication

lines (fablines) to be utilized in the users design. The selected choice propagates

down the entire hierarchy. The fabline selection process used in this thesis will

be discussed in Chapter 5.

B. SPECIFICATION

Use of the SPECIFICATION form, which is also dependent upon

the current object attached to the user's account, allows the user to fill in detailed

object characteristics. For example, if one were using a FIFO Block in his

design, he could specify its width, depth, output register, and connectors through

use of the SPECIFICATION form.

8



2. NETLISTING

NETLISTING allows the user to specify the interconnections between

Blocks and Modules to form higher level functional Modules. This is

accomplished through the use of NETNETLIST and OBJECT_NETLIST. It

should be noted that they both provide the same information but from different

points of reference.

A. NETNETLIST

NETNETLIST is used to specify the signal names to be connected

into a network, and once they are defined, the GENESIL System then creates the

network.

B. OBJECTNETLIST

OBJECTNETLIST allows the user to specify the signals on Blocks

or Submodules in a Module or Modules in a Chip, and the GENESIL system then

creates the connections between the specified objects.

The author found these two options to be the most important of the

GSC options used in this thesis. A mastery of these two options is paramount to a

successful and trouble-free design evolution. It was preferable to establish the

initial connections with OBJECT_NETLIST, and, if errors arose, they were

investigated with NETNETLIST. NETNETLIST allows one to trace signal

names and their associated connections.

3. FLOORPLANNING

FLOORPLANNING is the placement of objects on the Chip, the

specification of their FUSION order, and the connection of the pins to the pads

of the Chip. The FLOORPLANNING task prepares the design objects for

routing. One should be aware the FLOORPLANNING activities have a

9



significant influence on the efficiency of the router. FLOORPLANNING consists

of the following activities:

A. PLACEMENT

PLACEMENT specifies an object's location relative to other objects

in a Module or Chip. This is usually done graphically by either selecting the GSC

AUTO-PLACEMENT option or by manual PLACEMENT by the user. In

almost all cases the author preferred manual PLACEMENT over AUTO-

PLACEMENT. A further discussion of the PLACEMENT activity will be held

in Chapter 5.

B. FUSION

The FUSION activity allows the user to graphically create and

modify the assignments of routing channels on the floorplan to influence wire

routing. This option was not frequently used in this study although some

experimentation was conducted. There was no real enhancement observed to the

designs in this thesis when employing this option. Because the compiling process

and the plotting of the layout designs were very time-consuming (on the order of

several hours for large layouts), it was difficult to the justify the investment of

time for what little effect (if any) was observed.

C. PINOUT

PINOUT assigns external signals, both on and off the Chip. The user

must be aware of the assignment of pins as it affects the routing both on and off

the Chip.

4. COMPILE

The COMPILE activity can be initiated by the user or by the GENESIL

system. GENESIL automatically performs a currency check on all objects, and if

any are determined to be out of date it does a compile before any of the activities

10



requiring compilation. A design must first be compiled before any significant

activity can be started. Here, the author found it to be a time-saving investment if

modular subcomponents were first compiled prior to building larger arrays

incorporating these same subcomponents.

5. FUNCTIONAL SIMULATION

A. SIMULATE

SIMULATE is the operation to simulate the logical functioning of

the IC design under consideration. One may test the IC design using automatic

test vectors or by initiating manual simulation by binding the input pins to a "0"

or "1" and manually advancing the time. Note that this process does not check the

timing of the circuit. The manual method was used to test and simulate the

designs reported on in this thesis. For large numbers, the product was verified

with an HP-28S hand-held calculator. This topic is elaborated on in Chapter 5.

6. TIMING ANALYSIS

The GENESIL Timing Analyzer can calculate and report on the

following areas:

" Speed at which the object under analysis will run.
" Paths that limit the clock frequency.
• Duty-cycle (phase high time) constraints.
* Input setup and hold times.
* Output delays.
" Setup and hold times and signal delays for any internal nodes.
" Path delays between internal nodes.

11



IlI. MULTIPLIER BASICS

A. BASIC MULTIPLIER DESIGN

This section provides a brief review of basic multiplier design as background

before discussing the parallel multiplier arrays implemented in this report. The

formats that will be discussed are the serial form, serial/parallel form, and the

parallel form; the Wallace tree multiplier will also be briefly discussed. One

should keep in mind that the selection of a specific multiplier to be incorporated

in a particular design is based on speed, throughput, numerical accuracy, and

area [Ref. 2].

Before beginning a discussion on the various forms mentioned above, the

most basic form of multiplication will be discussed first. This is shown in Figure

4 which illustrates the multiplication of two positive binary integers, 1410 and

71o.

multiplicand; 1 110 1410
multiplier ; 0111 710

1110
1110

1110
0000
1100010 9810

Figure 4 Basic Form of Multiplication
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The multiplication is accomplished through successive additions and shifts.

This multiplication process may be separated into the following two steps:

* Evaluation of partial products.

- Addition of the shifted partial products.

It should be pointed out that one-bit binary multiplication is equivalent to a

logical AND operation. Thus, the evaluation of partial products consists of the

logical ANDing of the multiplicand and its associated bit in the multiplier.

1. Serial Multiplier

The simplest example of a serial multiplier is illustrated in Figure 5.

Here, multiplication is accomplished through a successive addition algorithm and

is implemented using a full adder, a logical AND, a delay element, and a serial-

to-parallel register. The numbers X and Y are presented serially to the circuit

and the partial product is evaluated for each bit of the multiplier. Next, a serial

addition is performed with the partial additions previously stored in the register.

The G2 gate resets the partial sum at the beginning of the multiplication cycle

[Ref. 2].

SFa R
E S E T

- - DELAY ELEMENT

XS E = FULL ADDER

Figure 5 Basic Serial Multiplier [From Ref. 2]
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2. Serial/Parallel Multiplier

The basic implementation of the serial/parallel multiplier form is

illustrated in Figure 6. Here, multiplication is performed by successive additions

of columns of the shifted partial products. As left-shifting by one bit in serial

systems is accomplished by a 1-bit delay element, the multiplier is successively

shifted and gates the appropriate bit of the multiplicand. The bits of the delayed,

gated multiplicand must all be in the same column of the shifted partial product.

They are added to form the product bit corresponding to the appropriate column

IRef. 21.

Y

AA

YO Y, Y2 YN-1

x 4

U-I
X - x M-1. 1 

2 
MI 

t 
X

Y " YN-I" "2 O - FULL ADDER - DELAY ELEMENT

Figure 6 Basic Structure for Serial/Parallel Multiplier

[From Ref. 2)
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3. Parallel Multiplier

The parallel multiplier form is the one utilized in the design of the

multipliers in this thesis. This form was selected primarily because, when

incorporated into an array, the unit cells of the multiplier can be used repeatedly,

resulting in a highly modular arrangement. Recall that this characteristic makes

the parallel array multiplier favorable for VLSI implementation.

In a parallel multiplier the partial products in the multiplication process

can be independently computed in parallel. For example, in the case of two

unsigned binary integers X and Y:
rn-i

X = Xi2i

i=O (3.1)

n-i

SY=XI Yj2 j

j=o (3.2)

The product is found by

M- n-1

Pr= XyYr =  Xi2' Yj2 j

i=O j= 0 (3.3)

rn-iln-i

= I (XiYj)2' + j

i=o j=o
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The partial product terms Pk are called summands. There are m n

summands, which are produced in parallel by the multiplication of mnn AND

gates [Ref. 2]. Figure 7 illustrates the partial products formed by the

multiplication of two 4-bit numbers.

X3 X2 Xi XO Multiplicand
Y3 Y2 YI YO Multiplier

X3YO X2YO XIYO XOYO
X3Y1 X2Y1 X1Y1 XOYI

X3Y2 X2Y2 X1Y2 XOY2
X3Y3 X2Y3 X1Y3 XOY3

P7 P6 P5 P4 P3 P2 PI P0 Product

Figure 7 4-Bit Multiplier Partial Products [From Ref 2]

For an n x n multiplier the required number of components would be

n(n-2) full adders, n half adders, and n2 AND gates. The worst-case delay

associated with such a multiplier is (2n = 1)tg, where tg is the worst-case adder

delay. Figure 8 illustrates a typical parallel multiplier cell which forms the basis

of the multipliers designed in this thesis.

I 

P, 

C,,X.

Figure 8 Parallel Multiplier Cell [From Ref. 2]
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Note in Figure 8 above, that the Xi term is propagated vertically, while

the Yj term is propagated horizontally, and that the partial products enter at the

top left of each cell. A bit-wise AND is performed in each cell, and the SUM

(Pi+1) is forwarded to the next cell at the lower right. The CARRY OUT (Ci+j)

is forwarded out the bottom of the cell. Figure 9 illustrates a parallel multiplier

array with the partial products formed within each parallel multiplier cell.

x3 x 2  x, xO

o X3 O o4 , Y 0

Figure 9 Parallel Multiplier Array [From Ref. 2]

As alluded to earlier, an inmportant feature of the parallel multiplier

array is that the unit cells of the multiplier can be used repeatedly, resulting in a

highly modular arrangement. This arrangement of parallel multiplier cells can

be drawn as a square array as indicated in Figure 10. Here, one can clearly see

how the Xi and Yi termis are propagated throughout the array by vertical and

17



horizontal feedthrough, respectively. As mentioned previously, this feature

makes the parallel array multiplier highly favorable for VLSI implementation.

X 3 X2 X, X

Yo

POY,

P,
Y 2

P 2

Y
3

P7 P6 P P, P3

Figure 10 Parallel Multiplier Array Drawn as a Square Array

[From Ref. 2]

4. Wallace Tree

A general discussion of digital multiplier design would not be complete

without some mention of the Wallace tree. As stated earlier, a study by Hallin

and Flynn [Ref. 6] demonstrated that the most efficient multiplier is a maximally

pipelined tree multiplier which was shown to be 50 percent more efficient (with

less overall delay) than an array multiplier.

The Wallace tree layout (Figure 11) is significant in that it utilizes a

matrix generation and reduction scheme, which is the fastest way to perform

parallel multiplication. However, it has some disadvantages when implemented in

VLSI. The full Wallace tree is topologically difficult to implement. Large

Wallace trees are difficult to map onto planes since each carry-save adder

communicates with its own slice, transmits carries to the higher order slice, and

receives carries from a lower order slice. This topology creates both I/O pin

difficulty and wire routing problems [Ref. 13]. Because a parallel array is highly

modular, it was selected over the Wallace tree for implementation in the GSC.

18
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IV. PIPELINING

A. INTRODUCTION

The purpose of this chapter is to introduce the reader to the concept and

theory of pipelining. As indicated in the title of this thesis, CMOS technology

was utilized in the implementation of the parallel multiplier arrays designed in

this thesis. It was previously noted that CMOS technology can substantially

reduce the power consumption of a device, but results in a much slower device

speed. Furthermore, it was noted that a parallel multiplier array operates at a

slower speed than a multiplier tree [Ref. 13]. By incorporating pipelining into

the design, however, the throughput of a parallel multiplier array may be

substantially improved.

B. BASICS OF PIPELINING

1. Bandwidth and Latency

When one reads the literature on pipelining one will observe that the

term bandwidth is often associated with pipelining. Bandwidth is defined as the

number of tasks that can be performed per unit time interval [Ref. 13]. For a

system that operates on only one task at a time, latency is the inverse of

bandwidth, and for a given latency the bandwidth can be increased by pipelining,

which allows for the simultaneous execution of many tasks [Ref. 13]. Figure 12

illustrates the pipelining concept by showing that a system with latency of n gate

delays can be operate at bandwidth of 1/n , 2/n, 3/n, etc. Figure 13 illustrates a

pipelined carry-save multiplier array; note the placement of the delay gates. This

increase in bandwidth may be accomplished by dividing the combinational logic

20



into separate stages which are in turn separated by latches [Ref. 13]. The goal of

designing a multiplier using pipelining is fast operation. If some function can be

executed in X ns, and the design can be separated into N stages, then a pipeline

designed to perform the same function repeatedly can perform that function in

limes down to X/N ns [Ref. 14]. An important question one might ask regarding

pipelining is what is the maximum rate at which a particular pipeline can

operate. This is discussed in the following section.

(a)

LCCOMBINATORIAL LOGIC

n gate delays

(b)

I =>gate delays 2gate delays

(C)

LATCH= n/3 gate LATCH,: n/3 gate =:>LATCH=, n/3 gate
delays 2 delays 3 delays

Increasing bandwidth by pipelining.
a. nonpipelined system bandwidth = I/n.

b. 2-stage pipelined system bandwidth = 2/n.
c. 3-stage pipelined system bandwidth = 3/n.

Figure 12 Increasing Bandwidth by Pipelining [From Ref. 13]
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r7

XOY3~ XOY 2  X0Ys X0YO

X23 X2Y2 X2YI XtY1 t

X3Y3 X3Y2  
T(Y XY

CARRY LOOKAHEAD ADDER 
T

S T  Se Ss S4 S3 S2

Pipelined carry-save multiplication array. The square boxes are carry-save

adders with three latches. Each square box has three inputs: a suim and a

carry from previous carry-save adders, and the third is the partial produci

'K • Y,. The ten unmarked rectangles on the right are )-bit latches to keep

correct timing.

Figure 13 Pipelined Carry-Save Multiplier Array [From Ref. 13]
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2. Analysis of a Pipelined Stage

The following definitions are commonly used in the analysis of pipelined

stages:

tx= propagation time through combinational logic

(f) for this stage of the pipeline (see Figure 14 (a) and (b)).

tr = minimum propagation time through the combinational logic

(f) for this stage of the pipelining.

ts= flip-flop setup time; the amount of time data has to be valid prior to

the clocking edge.

th = amount of time data must be valid after clocking edge (hold time).

H - T

cloc -

rx ) " \'
t

tS O~ t X

(a) TImIng scheme

PIPELINE 0

Input (x I F STAGE F Output f(x

Clock

(b) PIpellned stage

Figure 14 A Pipeline Stage

The above definitions can be used to determine the timing restrictions

for a pipelined circuit. For an edge-triggered D Flip-flop;

max (tr + tx) + ts -< T

min (tr + tx) > th
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V. DESIGN PROCESS OF A PIPELINED MULTIPLIER

A. DESIGN CONSIDERATIONS

This chapter will describe the design process for the parallel multiplier

arrays implemented in this thesis. The previous sections were provided to

establish a background for the design process. To gain more insight into the

discussions which follow, it is highly recommended that the reader work through

the tutorial section of [Ref. 8], although this is not an absolute requirement. The

GSC system manuals include a tutorial section. However, this author believes it

was written with the presumption that the reader had attended a one-week course

of instruction taught by the Silicon Compiler System Corporation of San Jose,

California. Withou. ths course of instruction the user may have some difficulty

working through the tutorial sections until some proficiency has first been

acquired

As stated earlier, the parallel multiplier array of Figure 8 (incorporating the

parallel multiplier cell) was selected for implementation in the GSC. This

decision was based primarily on the array's modular architecture. It was also

apparent that its feature of horizontal and vertical feedthrough was advantageous

for implementation in VLSI because the routing of the inputs Xi and Yi

throughout the entire array would be simplified.

1. Modeling the Parallel Multiplier Cell

One of the first design considerations contemplated was how to model

the basic parallel multiplier cell of Figure 8. In Figure 8, the bit-wise ANDing of

the partial products occurs inside the cell's boundaries. The results of each bit-

wise AND is summed with the SUM of another multiplier cell, as well as with a
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CARRY IN. The author determined that this cell could be implemented in

GENESIL by using a 1-bit full adder with one input being provided by the

output of an AND gate (from the formation of the partial products) and the other

from the SUM of another adder. Note that a I-bit full adder also provides for a

CARRY IN and CARRY OUT. Figure 15 shows the basic cell and its layout is

illustrated in Figure 16.

Xi Y

AND
SUI IN y CARRY IN

A B CIN

1 BIT FULL
ADDER

OUT COUT

SUM OUT CARRY OUT

Figure 15 Parallel Multiplier Cell for Implementation in GENESIL
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x CARYI

SUM IN

I I I

-T- F sCARRY OUT

Figure 16 GENESIL Layout of a Parallel Multiplier Cell

(101.6 MilS2)
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2. Selecting a Fabline

The next design consideration was to select a "fabline", that is, a

particular set of design rules used by a foundry to manufacturer a Chip. Because

Stuart [Ref. 151 did a full custom parallel multiplier array design using 1.5

CMOS, the same micron technology was selected for this study to enable a

comparison of results. Figure 17 shows the fablines available for selection.

II ) , I -,

F I 3 F I

I IF F 0" 1

I- I
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Note that fablines which include the number 15 are 1.5 gm technology.

To assist in the selection of a particular 1.5 CMOS fabline speed was used as the

criterion. To determine which fabline was the fastest, a timing analysis was

performed on four adders each incorporating a different 1.5 jtim fabline. Figure

18 illustrates a linear view of a GENESIL 1-bit full adder (note the labeling of

the signal lines), and Figure 19 illustrates the layout of a 1-bit GENESIL full

adder.

E, DE P

[H 
':"LIT -

~__

Figure 18 Linear View of a GENESIL 1-Bit Full Adder

28



Figure 19 GENESIL Layout of a 1-Bit Full Adder

The results of the timing analysis are listed in Table 1. The NSCCN15A

fabline was selected because it had the smallest maximum output delay for both

the CARRY OUT (coutlOl) and the SUM OUT (sout[O]).

29



TABLE 1

OUTPUT DELAYS FOR A GENESIL I-BIT FULL ADDER

cout[O] sout[o]

PhI (r) Delay(ns) PhI (r) Delay(ns)

Fabline Min Max Min Max height (mils) width (mils) area (mils2)

TSB CP15A 2.8 7.2 2.8 7.2 8.91 4.28 38.08

NCR CN15A 3.5 8.4 3.5 8.4 8.91 4.28 38.08

US2 CN15A 3.5 8.1 6.3 7.5 10.09 4.85 48.91

NSC CN15A 2.1 5.1 3.9 4.9 8.91 4.28 38.08

Note: 1 mil = 0.001 inches

In addition to the 1-bit full adder, a GENESIL D flip-flop was also

tested to determine if there was a difference in the output delay for each 1.5 gim

fabline. The results are listed in TABLE 2. As expected, in view of the results in

TABLE 1, the NSC_CN15A fabline produced a shorter output delay than the

other fablines. Figure 20 illustrates a linear view of a GENESIL D flip-flop and

Figure 21 illustrates the GENESIL layout of a D flip-flop.
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TABLE 2

OUTPUT DELAY FOR A GENESIL D FLIP-FLOP

Ph I (r) Delay(ns)
Fabline Min Max height (mils) width (mils) area (mils2)

TSB CP15A 4.5 5.0 3.27 8.46 27.63

NCR CN15A 6.0 6.2 2.88 7.46 21.51

US2 CN15A 4.8 5.8 2.88 7.46 21.51

NSC CN15A 3.8 4.0 2.88 7.46 21.51

r~~~~~ f, .. -. , t,. I,, , F-i r J ,, L:9 E EIo El ..

[E'FF
E, F C_

L (I, 4 L-' FFi- FH ,

I T: f E "",, - IO/
m 'E FE , jF , o IL IT,

F IT I ,',' L T01'LE I[EE iT IF

CIIFO, T TO LE

-'-

Figure 20 Linear View of a GENESIL D Flip-Flop
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LJ

100
C-3b

Figure 21 GENESIL Layout of a D Flip-Flop

The following section will begin describing the design process and the

integration of the parallel multiplier cells into functional multiplier arrays.
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B. DESIGN OF A 4-BIT PIPELINED MULTIPLIER ARRAY

1. Signal Naming Scheme

The author made a decision early in the implementation phase to first

demonstrate the feasibility and functionality of the parallel multiplier array by

constructing a 4-bit unsigned multiplier. Once the basic design was validated, a

pipelined version and larger arrays were then constructed.

Using a CAD, a 4-bit version of Figure 9 was drafted and is shown in

Figure 22. However, before the drawing could be made it was necessary to

devise a signal naming scheme. A requirement was set that this scheme must

impart some information on the origin of a signal, to assist in trouble shooting

the circuit, as well as be applicable to all of the parallel multipliers implemented

in this thesis.

Therefore, the scheme was based on a labeling convention similar to that of a

full adder. For example, the signals SUM OUT and CARRY OUT were labeled

as product out "po" and carry out "co", respectively. These labels were further

modified to "pokj" and "cokj", where k indicates the level number and j indicates

the adder position in a particular level. Here, k ranges from 0 to n , where n is

the number of bits the multiplier is capable of operating on. The j indicates the

position of the adder from the right-hand side of the level in which it is located

and it ranges from 0 to n - 1. For example, "po23" indicates the signal "product

out" from level 2 adder 3. Additionally, all AND gates were labeled according to

the partial products they form. For example, X2Yo indicates the ANDing of the

partial products X2 and Y0 . Furthermore, each row of adders were labeled as

"level_k" and each adder was labeled as "ADDkj", where k andj correspond to
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the level number and the adder's position, respectively. Finally, the last row of

adders was labeled as "FAPx" where x indicates a particular final product. For

example, "FAP4" indicates the final adder whose output is product 4.

2. 4-Bit Multiplier Array

From the very start of the construction phase for the 4-bit multiplier

array, there were questions regarding what method(s) and what Blocks or

Modules should be employed to build the arrays. The first approach at

constructing the array was to create a random logic Block (labeled multi_4bit).

After selecting the fabline NSCCN15 for this Block, 19 full adders, 16 AND

gates, and one OR gate were attached to it through the use of the options

SPECIFICATION and NEW. These components were then connected as in

Figure 22 by indicating the appropriate signal names in the SPECIFICATION

form. The SIGNALS function was then used to designate whether a particular

signal was an "input, output or bi-level." This first attempt resulted in a long

"stick-like" structure (see Figure 23) which would not be suitable for a Chip

layout simply due to its inefficient use of space. If larger multipliers were

constructed using this method one would produce long arrays whose length

would be proportional to the number of bits to be multiplied. Therefore, other

methods were sought to reduce the length of the array.

One method considered was to simply divide the array into rows of

adders (similar to Figure 10) according to their level by putting each row of

adders in random logic Block. Each random logic Block would then be attached

to a general random logic Module (labeled 4bmm; for 4-bit multiplier module)

and the rows of adders would be interconnected again as in Figure 22. When

implemented, this method proved successful in reducing the previous "stick-like"
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structure to a more compact modular arrangement. Figure 24 is the GENESIL

layout of this new modular arrangement.

jjjJM,, , g a K0 1 1

Figure 23 GENESIL Layout of multi 4bit

I ev .. e 1 .3

I eve 1 -.2
I D

Figure 24 GENEIRIL Layout of 4binm (1,958.3 lils2)
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The construction of the rows of adders (levels) in the modular

arrangement was accomplished through the employment of a generic "levelk".

As stated previously, a random logic Block was defined and four adders and four

AND gates were attached to it. The Block was then label as levelk. Through the

use of "ATTACH EXISTING", while the Module 4bmm was at the top of the

hierarchy, the generic levelk was successively attached. Each time levelk was

attached to the Module it was renamed according to it assigned level in Figure

22. The last row of adders was constructed by simply deleting the AND gates and

1-bit full adder from the generic level-k, and attaching an OR gate. The generic

levelk is illustrated in Figure 25. Figure 26 is a GENESIL linear view of the

generic levelk. A CAD drawing of the general random logic Module 4bmm

illustrating its block level layout is shown in Figure 27.
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GENERIC - RANDOM LOGIC BLOCK CALLED "leveibk"

ADDkJ ADDkJ ADDkJ ADDkj "level-k"

GENERIC -RANDOM LOGIC BLOCK IS COMPOSED OF 4
ADDER/AND COMBINATIONS

k = level (increasing from top to bottom) and J= adder position
(increasing from right to left)

k from 0 to n, where n = number of bits the multiplier is the
capable of operating on.

j from 0 to n -

i.e. ADD02 levelO , adder number 2

x v

AND

A B CIN

1 BIT FULL
ADDER

OUT COUT

SUrt OUT CARIY OUT

EACH ADDER/AND COMBINATION IS COMPOSED OF
A PARALLEL MULTIPLIER CELL

Figure 25 CAD Depiction of Generic Level k
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GENERAL MODULE (Random Logic) called "lbmm"

ADD03 ADD02 { ADDOlI ADDOO "level-O"

ADD13 ADDI12 ADDliI ADD 1 veIO

ADD23 ADD22 ADD21 ADD20 "levei-2"

ADD33 ADD32 ADD31 ADD30 'level3'"

Figure 27 General Module 4bmm
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A. Version 1

After a close inspection of Figure 24 (from this point on this layout

will be referred to as 4bmm.1 to indicate version 1 of 4bmm) the author decided

that the modular arrangement of Figure 27 was probably the best one to use

when implementing parallel multiplier arrays in GENESII. This decision was

based primarily on the modular arrangement of the parallel multiplier cells, as

well as the overall symmetry of the layout.

Before attempting to improve on the initial layout of Figure 24, the

functionality of the multiplier array was verified. This was a simple task and was

accomplished as described on page 102 of Reference 7. Several different binary

numbers were multiplied and their resulting products were verified using a

hand-held HP-28S calculator. The following is an example of how multiplication

was performed by GSC. The assignment of binary values to the inputs of

4bmm.1, x[3:0J and y[3:0j, and the product of multiplication is illustrated in

Figures 28 and 29, respectively.

L' r tIJ

f II 'L-TE

) ' :Lr,, f'a 'u l.,:t

~L ,, i J , , i

E I T ;I _ _S'

•F 1

(I t

!I1_EI T 2E--. L' C. L- FE OFE' 1 1 r~

Figure 28 Assignment of Binary Values to Inputs of 4bmm.1
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Figure 29 Product of Multiplying 1001xl001 Using 4brnrn.1

Following the verification of the functionality of 4bmma., a timing

analysis was performed to determine the output delays for each product P[7:0].

This was accomplished by selecting TIMING from the Executive menu and

executing OUTPUTDELAY. The results are listed in Figure 30 and indicate

4bmm.1 can theoretically be operated at approximately 29 MHz (1/34.7 ns). This

calculation is based on the output delay of P7 since it is the limiting product; it

has the larges, maximum delay of the other products.

Once 4bmm.I was verified to be operating correctly, attempts were

made to improve the speed and reduce the size of the array, by experimenting
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with changing the order and the location of the adder levels and by replacing

"FAP4-6" with a GENESIL library 3-bit adder.

B. Version 2

Version two of the array was created by replacing the final adders

of level_4 (FAP4-6) with a GENESIL library 3-bit adder (see Figure 31). As in

version one, a functional verification was conducted first before performing a

timing analysis. The results of the timing analysis are listed in Figure 32 and the

layout of 4bmm.2 is shown in Figure 33. One can see from the results in Figure

32 that the use of the GENESIL library 3-bit adder in level_4 resulted in a slight

reduction in the output delay for P7. The operating speed was calculated to be

approximately 30 MHz, and there was no significant change in size. However,

comparing the layout of level_4 of version 1 and 2 shows that the GENESIL 3-

bit adder of version 2 is of higher density than the 3 individual 1-bit adders of

version 1.
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Figure 30 Timing Analysis of 4bmm.1
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Figure 32 Timing Analysis of 4bmm.2

Figure 33 GENESIL Layout of 4bmni.2 (1,964.02 MilS2)
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C. Version 3

Version 3 (4bmm.3) was the first attempt at reordering the adder

levels to determine what effect this would have on the size and speed of the

array. When developing versions 1 and 2, the ordering of the levels was

determined by the AUTOPLACEMENT option from the PLACEMENT menu

which is a submenu of FLOORPLANNING. Although the specifications of the

array were entered into the GSC as in Figure 22, this did not necessarily

guarantee that the levels would be oriented in the same manner. When

performing FLOORPLANNING the user can elect to use either

AUTOPLACEMENT or manual PLACEMENT to arrange the relative

positions of the levels. For versions 1 and 2 AUTO_PLACEMENT was selected.

It uses an algorithm built into the GSC to determir the best placement of the

individual levels. Figure 34 illustrates the AUTO_PLACEMENT of the adder

levels as determined by the GSC. Note that the order is arranged according to the

specifications of Figure 22, with the exception that the final adders (level_4) are

located to the right of level_O.

l P.e ,..'e 1

RIL -_

level o
Ie , r V 1 - I- --

e

Figure 34 AUTOPLACEMENT of Adder Levels (VI&2)
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In version 3 (4bmm.3) tile order was rearranged from top to

bottom, using manual PLACEMENT, according to the "logic flow". This

reordering is illustrated in Figure 35. Note that the final 3-bit adder (level_4) is

now located below level_3. A GENESIL layout of this arrangement is shown in

Figure 36.

level 0

leve 11

:-1.. .. . '1 j"

level _

lelevel 2

Figure 35 Reordering of Adder Levels According to Logic Flow
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Figure 36 GENESIL Layout of 4bmm.3 (1,845.63 mils 2)

From the results of a timing analysis performed on 4bmm.3 it was

determined that the reordering had no significant effect on the output delay of

P7. The output delay for P7 of 4bmm.2 was 32.5 ns and for 4bmm.3 it was 32.4

ns. However, there was a 6% reduction in the overall size of the array. The

4bmm.2 design had total area of 1964.02 mils 2 while that of 4bmm.3 was

calculated to be 1845.63 mils2. Close inspection of Figure 36 reveals that there is

almost an equal distribution of metal above the final adders of level_4. One can

see metal stretching from the lower right side of level_3 across to the adders of

level_4. Level_4 was centered directly below level_3 to see if the metal routing

could be more equally distributed and perhaps further reduce the total area. This

was accomplished in version 4 below.

D. Version 4

As stated above, version four (4bmm.4) was simply a centering of

level_4 directly below level_3. The layout of 4bmm.4 is shown in Figure 37.

Again, there was no further reduction in the output delay of P7, however, there
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was a very slight reduction in the size of the array. The total area of 4bmm.4

was calculated to 1835.9 mils 2 which is a 1% reduction in the total area of

4bmm.3. Also, note that the metal routing between levels 3 and 4 has been

thinned out.

5i

Figure 37 GENESIL Layout of 4bnmm.4 (1,835.9 mils 2 )

3. 4-Bit Multiplier Array with Registered Inputs/Outputs

A. Version 1

When multipliers are implemented in actual circuits they are often

constructed with registered inputs and outputs. This is essential for pipelined

multipliers. Therefore, a bank of 8 D flip-flops was added to the inputs, x[3:O

and y[ 3 :0], and to the products P[7:0] as illustrated in Figure 38 (labeled

4bmml.RIRO). Here, AUTOPLACEMENT was used to see what the GSC

system would determine to be the best placement of the adder levels and the two

banks of D flip-flops. The resulting floorplan is shown in Figure 39. Note
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how the AUTOPLACEMENT algorithm placed the input registers next to the

level_3 adders. One can see similarities here between the floorplans of 4bmm.1

and 4bmm.2 of Figure 34. It appears the AUTOPLACEMENT algorithm

favors the placement of level_4 next to level_0. Figure 40 is a GENESIL layout

of 4bmml.RIRO.

level3

level _

]evel _U

Figure 39 AUTOPLACEMENT of 4bmnml.RIRO
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Figure 40 GENESIL Layout of 4bmml.RIRO (2,551.69 mils 2)

B. Version 2

Version 2 (4bmm2.RIRO) is 4bmm.4 with registered inputs and

outputs. It was implemented in the same fashion as 4bmml.RIRO, however,

manual PLACEMENT was used instead of AUTO_PLACEMENT. The input and

output registers were manually placed as drawn in Figure 38, and the resulting

floorplan is illustrated in Figure 41. Here, one can see an overlap between

adjacent levels. The was done manually to determine what effect overlap would

have on the GSC. The resulting layout of 4bmm2.RIRO is shown in Figure 42.

The total area of 4bmm2.RIRO was 2459.07 mils 2 while 4bmml.RIRO totaled

2551.69 mils 2. The 4bmm2.RIRO design resulted in approximately a 3.6 %

reduction in area compared to 4bmml.RIRO, and had a much "cleaner" looking

layout.
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Figure 41 Floorplan for 4bmm2.RIRO
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Figure 42 GENESIL Layout of 4bmm2.RIRO (2,459.07 mils 2)

4. 4-Bit Pipelined Multiplier Array

After experimenting with the 4-bit multiplier array, the author

concluded that the best arrangement for the registers and adder levels was as

indicated in Figure 42. As demonstrated by the timing analysis for 4bmm.2 and

4bmm.3, there was no significant reduction in the output delay of P7 when the

adder levels were oriented in the order of "logic flow". However, it was

demonstrated that orienting the adder levels in the order of the "logic flow"

resulted in an overall reduction in array area. With this in mind, it was decided

to orient the pipelined version of the 4-bit multiplier array in the same manner;

that is, in the order of the "logic flow."

Before designing the 4-bit pipelined version it was necessary to

determine between what levels to insert a bank of D flip-flops. From inspection

of Figure 32, it was decided to insert a row of flip-flops between level_2 and

level_3 (see Figure 43). This would provide for two pipelined stages without
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splitting up the library 3-bit adder into individual adder units as was previously

done. The first stage requires approximately 17.6 ns to propagate the partial

multiplication products while the second stage requires approximately 14.9 ns

(32.5 ns - 17.6 ns). Here, one can see the limiting stage is comprised of level_0

thru level_2. In other words, the multiplier is limited to the pipelined stage with

the longest delay. However, one must also include the delay of the D flip-flops in

the overall timing calculation. The theoretical clock period (T) is determined

from the sum of the longest pipelined stage delay plus the flip-flop delay and the

setup time for the flip-flops. Here, the assumption is made that all stages in the

pipeline receive the same clock pulse simultaneously. In reality, due to circuit

lengths, loading, and driver circuits it is nearly impossible to guarantee that all

stages of a pipelined circuit receive the same clock pulse at exactly the same time.

From Table 2, and Figures 32 and 44, T is estimated at 23.1 ns [17.6 ns (slowest

stage delay) + 4.0 ns (D flip-flop delay) + 1.5 ns (setup time)].

F .1 F 1. f

- --I' 1,r : , I ' ,I .-.. .

Fi gF t4 iIp ' aIndI l ' f 4li 'P

F ,l F ! ..: . , ,, ,,e , : -1 , ' ,i
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Figure 44 Input Setup and Hold Times for 4bmmPL
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The corresponding clock frequency was estimated at approximately 43 MHz

(lI/T). The theoretical clock frequency for 4bmm2.RIRO was determined to be

approximately 26 MHz (1/38 ns) [32.5 ns (delay for entire array) + 4.0 ns (D

flip-flop delay) + 1.5 ns (setup time)]. 4bmmPL illustrates the increase in

throughput when pipelining is employed. The GENESIL floorplan and layout for

4bmmPL are shown in Figures 45 and 46.

level-0

I' e v e .- 2leve 1.

.level.2

] eve] _3.

Figure 45 Floorplan for 4bmmPL
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Figure 46 GENESIL Layout of 4bmmPL (4,455.45 mils 2 )

Following the construction and functional verification of 4bnimPL, a

timing analysis was performed to determine the accuracy of the predicted clock

speed vs. the actual clock speed as determined by GENESIL. The option "clocks"

was used to determined the worst case paths. From inspection of Figure 47, one

can see that the worst case path was determined to be 24.6 ns or approximately

40 MHz. This indicates the predicted value was in error by approximately 7%. It

is assumed that when the circuit is tested as a whole, greater accuracy is

achievable due to simulation of the loading conditions, as well as circuit length

delays.
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Figure 47 Clock Worst Case Paths for 4bnimPL

After a timing analysis was conducted, the orientation of the'levels and

registers were varied to determine if a smaller layout could be attained.

The first attempt at decreasing the layout of 4bmmPL was to use

GENESIL's AUTOPLACEMENT algorithm instead of manual PLACEMENT

during the FLOORPLANNING process. The resulting floorplan is shown in

Figure 48. It reveals a totally different perspective on arranging the Blocks

which comprise 4bmmPL. One can see how the algorithm placed the pipeline

register (PLI) next to the input and output registers, DFFIN and DFFOUT

respectively. The resulting GENESIL layout is shown is Figure 49. GENESIL's
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AUTOPLACEMENT algorithm was able to reduce the layout by approximately

28% by simply rearranging the Blocks during FLOORPLANNING.

evel 2

.evel-1

leve1 3

eve~ 0

Figure 48 Floorplan from AUTOPLACEMENT of 4bnnPL
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Figure 49 GENESIL Layout of 4bmniPL After

AUTOPLACEMENT (3,476.5 mils 2)

After observing the results of GENESIL's AUTOPLACEMENT

algorithm, the author decided to "challenge" GENESIL's algorithm by splitting

PLI of Figure 43 in an attempt to further reduce the total area of 4bmmPl. The

splitting was accomplished by using two banks of D flip-flops. One bank

contained 8 flip-flops and the other 7. The two banks, labeled PL_IA and

PL_3IB, were manually placed at the sides of levels 1, 2, and 3 as illustrated in

Figure 50. The resulting GENESIL layout is shown in Figure 51. Here, one can

also see the difference between what is shown in the floorplan view and the final
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GENESIL layout. This orientation did not result in a smaller total area than that

achieved by GENESIL's AUTO_ PLACEMENT algorithm; 3477.5 milS2 versus

3850.7 MilS2.

IeveI I

leveL

j. ~ level 1 4

Figure 50 Floorplan of Split PL-lA and PL-lB of 4bmmPL

Figure 51 GENESIL Layout of Split PL 1A and PL-1lB of 4bmmPL
(3,850.72 miusT)
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A final attempt at reducing the area was accomplished by stacking

PLIA on top of PLIB, and then positioning them between levels 2 and 3.

AUTOFUSION was then selected. The resulting layout is shown in Figure 52.

Figure 52 Stacking of PLIA and PLIB of Split 4bmmPL

A rather surprising result was observed. It appears that the

AUTOFUSION option "pushed" the two stacked registers below the final adders

even though the were manually placed between levels 2 and 3. This orientation

was not successful in reducing the total area as was AUTOPLACEMENT.

Therefore, one must conclude that GENESIL's AUTOPLACEMENT algorithm

is better able to place the individual Blocks of 4bmmPL to achieve a smaller total

area. Even though it was demonstrated that the orientation in Figure 49 resulted

in the smallest total area, it was decided to incorporate the orientation of Figure

46 into a Chip Module to better illustrate the concept of pipelining. Figure 53

shows the floorplan for the 4-bit multiplier Chip (4bmulti-chip) and its

GENESIL layout is shown in Figure 54.
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Figure 53 Floorplan of 4bmulti chip

Figure 54 GENESIL Layout of 4bmultichi p (19,806.15 MilS2)
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Note that the Chip Module 4bmultichip is approximately 445% greater in total

area than 4bmmPL.

C. DESIGN OF AN 8-BIT PIPELINED MULTIPLIER ARRAY

1. 8-Bit Multiplier Array

After the design of the 4-bit pipelined multiplier array was completed,

efforts were directed towards developing the layout of an 8-bit pipelined

multiplier. The same basic techniques used in the development of the 4-bit

multiplier were applied.

A. Version 1

The first step was to extend the CAD drawing of Figure 22 to an 8-

bit array. Figures 55 and 56 show the CAD drawing for an 8-bit parallel

multiplier array (version 1 was labeled 8bmm.1). Note the final row of adders.

Each final adder (FAP8-FAP14) is a 1-bit full adder. The carryout of each adder

is rippled to the adjacent adder to the left. A generic level-k, comprised of 8 full

adders and 8 AND gates, was employed to construct the array.

The AUTOPLACEMENT algorithm was used during FLOOR-

PLANNING in order to evaluate its placement of the blocks for the array.

Figure 57 shows the results of GENESIL's AUTOPLACEMENT algorithm for

8bmm.1. One can see a similarity to Figure 24. Note how the

AUTOPLACEMENT algorithm in both cases positioned the smallest block at

the top of the array. Also, note in Figure 57 that the levels are not arranged in

the order of "logic flow." Figure 58 shows the GENESIL layout for 8bmm.1

with a total area of 8157.5 mils 2. One can see a thickening of metal between

level_2 and the other adder levels, as well as to the left of the array in both the

upper and lower regions.
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Before further modifications to the array were made, the

functionality was verified. Following the functional verification, a timing

analysis was conducted and the results are shown in Figure 59.
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Figure 59 Timing Analysis for 8bm .1

B. Version 2

Following the functional verification and timing analysis for

8brin., the orientation of the ADDER/AND levels of the multiplier was

changed to reflect the order of logic flow. The floorplan for this orientation
(labeled 8bmm.2) is shown in Figure 60. Note the spacing between thie levels of

the floorplan. This was done for comparison with the next iteration to determine

what effect spacing and overlap would have on the overall multiplier size. Figure

62 shows the resulting GENESIL layout. Comparing Figures 58 and 61, one can

see the latter is a "cleaner" looking layout with minimal metal running

throughout the array. The resulting area was calculated to be approximately

8474.23 mils 2 compared to 8157.51 mils 2 for 8bmm.1. This represe ts

approximately a 4% increase in area. A timing analysis was also conducted to

determine if this orientation resulted in a lower propagation delay for P15. The
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Figure 60 Floorplan for 8bmm.2

Figure 61 GENESIL Layout of 8bmm.2 (8,474.23 mils2)
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results of the timing analysis indicate that there was no significant difference in

,he propagation delay for P15 (52.3 ns vs 53.5 ns for 8bmm.2 and 8bmm.l,

respectively).

C. Version 3

The next iteration (8bmm.3) was done specifically to determine if

the multiplier area could be reduced if adjacent levels were slightly overlapped

during FLOORPLANNING. Figure 62 s.""ws how the individual layers were

manually placed and overlapped during the FLOORPLANNING process. The

resulting layout for 8bmm.3 was similar to Figure 61.

le _e 1_3

Figure 62 Floorplan for 8inn3

The resulting area was calculated to be 8513.23 mils 2 . This

represents an increase of approximately 1% over 8bmm.2. This suggest that

overlapped levels will be separated by a slightly greater amount than if they were

adjoining each other.
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D. Version 4

The next iteration (8bmm.4) was a modification to 8bmm.3 by

replacing the final individual 1-bit adders with a 7-bit adder. As observed in

4brn.2, it was expected that the propagation delay of the final product (here

P15) would be reduced. Figure 63 shows this modification to level_8. The

floorplan for 8bmm.4 was identical to 8binm.3 (see Figure 62).
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The resulting layout is shown in Figure 64. Close inspection Of level_8 reveals a

higher density for the 7-bit adder than for the individual adders of 8bmm.3. A

timing analysis was performed on 8bmm.4 and the results are shown in Figure

65. As expected, the delay for P15 of 8bmm.4 was reduced by 6.5 ns (67.6 ns -

Figure 64 GENESIL Layout for 8binrn.4 (8,539.21 MilS2)
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61.1 ns) which represents an reduction of approximately 6% in propagation

delay.

E. Version 5

The last iteration of this particular orientation centered the final row

of adders directly below the last level of the array as in 4bmm.4. The layout

(8bmm.5) is shown in Figure 66 which resulted in a reduction of approximately

2% in total area over that of 8bmm.4. Also, there was no change in the timing

analysis; it was the same as for 8bmm.4 (Figure 65).

Figure 66 GENESIL Layout of 8bmm.5 (8,395.65 mils 2)

F. Version 6

The last version of the 8-bit multiplier (8BITMOD) array was

constructed from four 4-bit multiplier array modules (see Figure 22). The

floorplan for 8BITMOD is shown in Figure 67. Each 4-bit multiplier array

module was attached to a common general module, as well as a single random
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logic Block containing the final adders. Although this particular orientation did

not result in a reduction in total area, the design was very useful in learning how

4-bItblk2 4-bltblk I

4-bltblk4 4-bltblk3

I ADDERI

Figure 67 Floorplan for 8BITMOD

to use OBJECTNETLIST and NETNETLIST. 8BITMOD required extensive

use of OBJECTNETLIST when interconnecting the four individual modules,

particularly, when routing signals across the module boundaries. For example, a

signal can be identified inside a module as signal "x" but when the signal line

leaves the module and is routed to another module, one can change its name to

signal "y". This property was very useful and minimized the requirement to

"customize" each individual 4-bit multiplier. The GENESIL layout for

8BITMOD is shown in Figure 68. The total area is approximately 8993.1 mils 2.

This was the largest of the 8-bit parallel multiplier arrays.

Before starting the design of the pipelined version of the 8-bit

parallel multiplier array, a decision had to be made regarding what orientation to

implement. Based on size only, 8bmm.l (Figure 58) would be favored because

75



it had the smallest area. However, due to the size (width) of the D flip-flops

required to pipeline the array, the orientation of 8bmm.5 (see Figure 66) was

selected. The decision to implement the orientation of 8bmm.5 was also based on

Figure 68 GENESIL Layout for 8BITMOD (8,993.1 mils 2 )

the inherent symmetry of the array which would lend itself to simple horizontal

cuts for inserting the pipeline registers.

2. 8-Bit Pipelined Multiplier Array

The first step in designing the pipelined 8-bit multiplier array was to

inspect the timing analysis of 8bmm.5 to determine between what levels the

pipelined registers should be inserted. Based on the output delays of 8bmm.5

listed in Table 3, the array was divided into four pipelined stages. The product

out of the first stage (P2) was available after a 17.6 ns propagation delay and the

outputs from the other stages were nearly a multiple of this delay.
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TABLE 3 TIMING ANALYSIS FOR 8BMM.5

Product P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 PI3 P14 P15
1ea 16.8 12.11 17.8123.1128.9 134.3140.0145.3 149.7151.5153.4154.7156.657.9159.861.11

Table 3 suggest inserting registers between products P2/P3, P5/P6, and

P9/P10 which will result in nearly equal delays for each stage. This corresponds

to inserting registers between levels 2/3, 5/6, and P9/PIO of Figures 55 and 63.

The insertion of registers between P9/P10 required a modification to the final

row of adders in level_8. This modification (8bmm.5A) is shown in Figure 69

below. It was necessary to split the original 7-bit adder of 8bmm.5 into a 5-bit

and 2-bit adder to accommodate the insertion of the final pipeline registers. A

11- jfI r'Ct -i

: .... ... ... .... .. '

Figure 69 Modification to Level_8 (8bmm.5A)

77



timing analysis was conducted on 8bmm.5A and the results are shown in Figure

70 below.
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Figure 70 Timing Analysis for 8bmm.5A

The results show a 17.8 ns delay for the stage 1 (levels 0-2), a 16.5 ns

delay for stage 2 (levels 3-5), a 16.4 ns delay for stage 3 (level_6 thru P9), and

an 8.8 ns delay for stage 4, the final row of adders. This is summarized in Table

4 below.

TABLE 4 OUTPUT DELAYS FOR PIPELINED STAGES 1-4

STAGE LEVELS OUTPUT DELAYS (ns)
1 0-2 17.8
2 3-5 16.5
3 6-P9 16.4
4 P10-PI5 8.8
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Following the timing analysis, a CAD drawing depicting the pipelined 8-

bit multiplier array (8bmmPL) was made. Figure 71 shows the upper third and

Figure 72 shows the middle third of 8bmmPL. Figure 73 shows the lower third

of this array.
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Figure 71 CAD Layout of 8bnimPLJ (Upper Third)
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Figure 72 CAD Layout of 8binmPL (Middle Third)
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The basic signal naming scheme was modified, due to the presence of

pipelined stages, by use of an underline character"_ to indicate signals which

passed through pipelined stages.
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Figure 73 CAD Layout of 8bmmPL (Lower Third)

Note in Figure 73 how the first two adders are separated from the final

row of adders in level_9. This resulted from the splitting of the original 7-bit

adder in order to pipeline in four stages. The floorplan for the array is shown in

Figure 74 and the GENESIL layout is shown in Figure 75. One can clearly see

the individual levels and pipeline registers. However, one can also see unused

spaced between the first two stages to the left and right of the array. One can also

see the two adders, which produce P8 and P9, and the empty space surrounding

them. Yet, overall, the structure clearly shows the logic flow of the array and

demonstrates the physical concept of pipelining.
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Following the functional verification of 8bmmPL, a timing analysis was

conducted to determine the worst case paths. The results are shown in Figure 76.

The worst path was determined to be 26.7 ns which corresponds to clock rate of

approximately 37.45 MHz.
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Figure 76 Worst Case Path for 8bmmrPL

Finally, 8bmmPL was incorporated into a multiplier Chip

(8bmulti_chip) which resulted in a total area of 44,488.41 Mils 2 . Note the Chip

Module (8bmulti-chip) is approximately 222% greater in total area than

8bmmPL. Figure 77 shows the GENESIL layout for 8bmulti-chip.

83



LQ*

, -

tw Y

E MI r. 1M

Figure 77 GENESIL Layout for 8bmulti_chip (44,488.41 mils 2)

3. 16-Bit Pipelined Multiplier Array

A 16-bit pipelined multiplier array, incorporating parallel multiplier

cells, was not implemented in this study; however, from Figures 75 and 77 a

projection of its core size (without PADS) was estimated to be 99,328 mils 2 (256

x 388), while its Chip size was estimated at 140,800 mils2 (320 x 440). Figure 78

shows a Block level layout for this multiplier. Its operating speed was estimated

at 38 Mliz; the same as 8bmmPL.
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VI. LIMITATIONS OF THE SILICON COMPILER

It was a goal of this thesis to fully explore and probe the GENESIL Silicon

Compiler system in order to determine its practical limits in parallel multiplier

array design. During this course of study, two apparent limitations of the GSC

system in parallel multiplier array design were discovered. They are:

* Component density.

• Vertical feedthrough.

The most significant limitation of the GSC system appears to be its inability

to achieve high component density in parallel multiplier arrays of the type

implemented in Chapter 5. Here, component density refers to the relative

distance between levels of a parallel multiplier array, as well as between

individual components comprising the array. It appears that high density is

precluded because of the abutting of the power buses VDD and Vss of the

individual components of the array. Figure 79 shows this abutment between

adjacent components. Higher density might be achieved if the power buses of

adjacent components were permitted to overlap. Additionally, the relative size

(width) of the power buses appears to be a factor contributing to the separation

between components.

The second limitation of the GSC appears to be its inability to establish

vertical feedthrough between adjacent levels of ADDER/AND components in the

parallel multiplier arrays in this study. As stated earlier, an attempt was made to

increase the density of the arrays by collapsing the array vertically by moving

the AND gate to the top of the ADDER and then rotating the two blocks

clockwise 900. After rotating the two blocks, a feedthrough Block was attached to
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each AND gate. This proved unsuccessful in passing the xi from the AND gate of

the upper level to the AND gate in the level below. Figure 80 shows just one of

several attempts to establish vertical feedthrough.

Although the GSC system did not perform as desired in this study, it offers a

viable alternative to the labor intensive, full custom, VLSI graphic layout tools in

use today.
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Figure 79 Abutment of ADDER/AND

Figure 80 Vertical Feedthrough
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VII. CONCLUSIONS

A. SUMMARY

The main goal of this thesis was to describe the design methodology and the

process of employing the GENESIL Silicon Compiler (V7.1) in the layout of a

pipelined multiplier, in 1.5 micron CMOS technology, using a parallel multiplier

cell array. There was an additional goal of determining the practical limits of the

GSC in parallel multiplier array design. Finally, there was the intent to produce

a document with sufficient background material for those readers not well versed

in digital design methodology in order that they might gain some understanding

of the methods involved in the design of a pipelined parallel multiplier array.

The material in Chapter 2 provided a brief introduction to one particular

silicon compiler, namely the GENESIL Silicon Compiler (GSC). Chapter 3

provided a review of the basic principles of digital multipliers, while Chapter 4

covered the basic concept and theory of pipelining. The design iterations of

several pipelined parallel multiplier arrays, incorporating parallel multiplier

cells, were presented in Chapter 5. Comments regarding the practical limits of

the GSC system when implementing the parallel multiplier array designs of this

study were presented in Chapter 6.

The results of this thesis indicate that a parallel multiplier array,

incorporating parallel multiplier cells, can be successfully implemented in the

GSC system. However, two practical limits of the GSC system precluded

achieving the degree of high component density (smaller size) made possible by

full custom manual/CAD design methods using graphic layout tools.
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B. RECOMMENDATIONS

The author makes the following recommendations:

• Install version 8.0 of the GENESIL Silicon Compiler at the Naval

Postgraduate School as soon as possible.

* Explore version 8.0 fully to determine its capability to establish

vertical feedthrough. If successful, incorporate this feature into future

parallel multiplier array designs for comparison with full custom

manual/CAD designs using graphic layout tools.

" Investigate ways to reduce the CPU loading on the VAX system during

normal working hcurs in order to enhance the performance of the GSC

system.

• Allow for 3-4 months in learning to use the GSC. Preferably one should also

attend the one week training course offered by Silicon Compiler System

Corporation of San Jose, California.

" Incorporate the GSC system into, and make it a regular part of, a course of

instruction at the Naval Postgraduate School.
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